×
img

国际货币基金组织:传统计量经济学模型与机器学习算法的GDP预测性能:模拟和案例研究(英文版)

发布者:wx****25
2025-12-12
5 MB 48 页
文件列表:
国际货币基金组织:传统计量经济学模型与机器学习算法的GDP预测性能:模拟和案例研究(英文版).pdf
下载文档

Are Machine Learning (ML) algorithms superior to traditional econometric models for GDP nowcasting in a time series setting? Based on our evaluation of all models from both classes ever used in nowcasting across simulation and six country cases, traditional econometric models tend to outperform ML algorithms. Among the ML algorithms, linear ML algorithm – Lasso and Elastic Net – perform best in nowcasting, even surpassing traditional econometric models in cases of long GDP data and rich high-


加载中...

本文档仅能预览20页

继续阅读请下载文档

网友评论>

开通智库会员享超值特权
专享文档
免费下载
免广告
更多特权
立即开通

发布机构

更多>>