×
PyTorch教程PyTorch简介PyTorch安装神经网络数学构建模块PyTorch神经网络基础机器学习与深度学习实现神经网络神经网络到功能块PyTorch术语PyTorch加载数据PyTorch线性回归PyTorch卷积神经网络PyTorch递归神经网络PyTorch数据集PyTorch Convents简介PyTorch从Scratch训练ConventPyTorch Convents特征提取PyTorch Convents可视化PyTorch Convent进行序列处理PyTorch单词嵌入PyTorch递归神经网络

PyTorch Convents特征提取


卷积神经网络包括主要特征,提取。以下步骤用于实现卷积神经网络的特征提取。

第1步

导入相应的模型以使用“PyTorch”创建特征提取模型。

import torch
import torch.nn as nn
from torchvision import models

第2步

创建一类特征提取器,可以在需要时调用。

class Feature_extractor(nn.module):
   def forward(self, input):
      self.feature = input.clone()
      return input
new_net = nn.Sequential().cuda() # the new network
target_layers = [conv_1, conv_2, conv_4] # layers you want to extract`
i = 1
for layer in list(cnn):
   if isinstance(layer,nn.Conv2d):
      name = "conv_"+str(i)
      art_net.add_module(name,layer)
      if name in target_layers:
         new_net.add_module("extractor_"+str(i),Feature_extractor())
      i+=1
   if isinstance(layer,nn.ReLU):
      name = "relu_"+str(i)
      new_net.add_module(name,layer)
   if isinstance(layer,nn.MaxPool2d):
      name = "pool_"+str(i)
      new_net.add_module(name,layer)
new_net.forward(your_image)
print (new_net.extractor_3.feature)

分类导航

关注微信下载离线手册

bootwiki移动版 bootwiki
(群号:472910771)