×

Apache Pig 介绍

Apache Pig 概述Apache Pig 架构

Apache Pig 环境

Apache Pig 安装Apache Pig 执行Apache Pig Grunt Shell

Pig Latin 介绍

Pig Latin 基础

Apache Pig 加载和存储

Apache Pig 加载数据Apache Pig 存储数据

Apache Pig 诊断运算符

Apache Pig Diagnostic运算符Apache Pig Describe运算符Apache Pig Explain运算符Apache Pig illustrate运算符

Apache Pig 分组和连接

Apache Pig Group运算符Apache Pig Cogroup运算符Apache Pig Join运算符Apache Pig Cross运算符

Apache Pig 合并和拆分

Apache Pig Union运算符Apache Pig Split运算符

Apache Pig 过滤

Apache Pig Filter运算符Apache Pig Distinct运算符Apache Pig Foreach运算符

Apache Pig 排序

Apache Pig Order By运算符Apache Pig Limit运算符

Pig Latin 内置函数

Apache Pig Eval函数Apache Pig 加载和存储函数Apache Pig 包和元组函数Apache Pig 字符串函数Apache Pig 日期时间函数Apache Pig 数学函数

Apache Pig 其他执行模式

Apache Pig 用户定义函数Apache Pig 运行脚本

Apache Pig 有用的资源

Apache Pig 有用资源Apache Pig 讨论

Apache Pig 存储数据


在上一章中,我们学习了如何将数据加载到Apache Pig中。你可以使用 store 运算符将加载的数据存储在文件系统中,本章介绍如何使用 Store 运算符在Apache Pig中存储数据。

语法

下面给出了Store语句的语法。

STORE Relation_name INTO ' required_directory_path ' [USING function];

假设我们在HDFS中有一个包含以下内容的文件 student_data.txt

001,Rajiv,Reddy,9848022337,Hyderabad
002,siddarth,Battacharya,9848022338,Kolkata
003,Rajesh,Khanna,9848022339,Delhi
004,Preethi,Agarwal,9848022330,Pune
005,Trupthi,Mohanthy,9848022336,Bhuwaneshwar
006,Archana,Mishra,9848022335,Chennai.

使用LOAD运算符将它读入关系 student ,如下所示。

grunt> student = LOAD 'hdfs://localhost:9000/pig_data/student_data.txt' 
   USING PigStorage(',')
   as ( id:int, firstname:chararray, lastname:chararray, phone:chararray, 
   city:chararray );

现在,让我们将关系存储在HDFS目录“/pig_Output/"中,如下所示。

grunt> STORE student INTO ' hdfs://localhost:9000/pig_Output/ ' USING PigStorage (',');

输出

执行 store 语句后,将获得以下输出。使用指定的名称创建目录,并将数据存储在其中。

2015-10-05 13:05:05,429 [main] INFO  org.apache.pig.backend.hadoop.executionengine.mapReduceLayer.
MapReduceLau ncher - 100% complete
2015-10-05 13:05:05,429 [main] INFO  org.apache.pig.tools.pigstats.mapreduce.SimplePigStats - 
Script Statistics:
   
HadoopVersion    PigVersion    UserId    StartedAt             FinishedAt             Features 
2.6.0            0.15.0        Hadoop    2015-10-0 13:03:03    2015-10-05 13:05:05    UNKNOWN  
Success!  
Job Stats (time in seconds): 
JobId          Maps    Reduces    MaxMapTime    MinMapTime    AvgMapTime    MedianMapTime    
job_14459_06    1        0           n/a           n/a           n/a           n/a
MaxReduceTime    MinReduceTime    AvgReduceTime    MedianReducetime    Alias    Feature   
     0                 0                0                0             student  MAP_ONLY 
OutPut folder
hdfs://localhost:9000/pig_Output/ 
 
Input(s): Successfully read 0 records from: "hdfs://localhost:9000/pig_data/student_data.txt"  
Output(s): Successfully stored 0 records in: "hdfs://localhost:9000/pig_Output"  
Counters:
Total records written : 0
Total bytes written : 0
Spillable Memory Manager spill count : 0 
Total bags proactively spilled: 0
Total records proactively spilled: 0
  
Job DAG: job_1443519499159_0006
  
2015-10-05 13:06:06,192 [main] INFO  org.apache.pig.backend.hadoop.executionengine
.mapReduceLayer.MapReduceLau ncher - Success!

验证

你可以如下所示验证存储的数据。

步骤1

首先,使用 ls 命令列出名为 pig_output 的目录中的文件,如下所示。

hdfs dfs -ls 'hdfs://localhost:9000/pig_Output/'
Found 2 items
rw-r--r-   1 Hadoop supergroup          0 2015-10-05 13:03 hdfs://localhost:9000/pig_Output/_SUCCESS
rw-r--r-   1 Hadoop supergroup        224 2015-10-05 13:03 hdfs://localhost:9000/pig_Output/part-m-00000

可以观察到在执行 store 语句后创建了两个文件。

步骤2

使用 cat 命令,列出名为 part-m-00000 的文件的内容,如下所示。

$ hdfs dfs -cat 'hdfs://localhost:9000/pig_Output/part-m-00000' 
1,Rajiv,Reddy,9848022337,Hyderabad
2,siddarth,Battacharya,9848022338,Kolkata
3,Rajesh,Khanna,9848022339,Delhi
4,Preethi,Agarwal,9848022330,Pune
5,Trupthi,Mohanthy,9848022336,Bhuwaneshwar
6,Archana,Mishra,9848022335,Chennai 



分类导航

关注微信下载离线手册

bootwiki移动版 bootwiki
(群号:472910771)