×

R 教程

R语言 概述R语言 环境设置R语言 基本语法R语言 数据类型R语言 变量R语言 运算符R语言 决策R语言 包R语言 循环R语言 数据重塑R语言 函数R语言 字符串R语言 向量R语言 列表R语言 矩阵R语言 数组R语言 因子R语言 数据帧

R语言 图表

R语言 条形图R语言 箱线图R语言 直方图R语言 折线图R语言 散点图R语言 饼状图

R语言 数据接口

R语言 CSV文件R语言 Excel文件R语言 二进制文件R语言 XML文件R语言 JSON文件R语言 Web数据R语言 数据库

R语言 统计示例

R语言 平均值,中位数和模式R语言 线性回归R语言 多重回归R语言 逻辑回归R语言 标准分布R语言 二项分布R语言 泊松回归R语言 协方差分析R语言 时间序列分析R语言 非线性最小二乘R语言 决策树R语言 随机森林算法R语言 生存分析R语言 卡方检验

R语言 相关资源

R语言 外部资源R语言 相关讨论R语言 面试题

R语言 二项分布


二项分布模型处理在一系列实验中仅发现两个可能结果的事件的成功概率。 例如,掷硬币总是给出头或尾。 在二项分布期间估计在10次重复抛掷硬币中精确找到3个头的概率。

R语言有四个内置函数来生成二项分布。 它们描述如下。

dbinom(x, size, prob)
pbinom(x, size, prob)
qbinom(p, size, prob)
rbinom(n, size, prob)

以下是所使用的参数的描述 - 

  • x是数字的向量。

  • p是概率向量。

  • n是观察的数量。

  • size是试验的数量。

  • prob是每个试验成功的概率。

dbinom()

该函数给出每个点的概率密度分布。

# Create a sample of 50 numbers which are incremented by 1.
x <- seq(0,50,by = 1)

# Create the binomial distribution.
y <- dbinom(x,50,0.5)

# Give the chart file a name.
png(file = "dbinom.png")

# Plot the graph for this sample.
plot(x,y)

# Save the file.
dev.off()

当我们执行上面的代码,它产生以下结果 -

dbinom()图

pbinom()

此函数给出事件的累积概率。 它是表示概率的单个值。

# Probability of getting 26 or less heads from a 51 tosses of a coin.
x <- pbinom(26,51,0.5)

print(x)

当我们执行上面的代码,它产生以下结果 -

[1] 0.610116

qbinom()

该函数采用概率值,并给出累积值与概率值匹配的数字。

# How many heads will have a probability of 0.25 will come out when a coin is tossed 51 times.
x <- qbinom(0.25,51,1/2)

print(x)

当我们执行上面的代码,它产生以下结果 -

[1] 23

rbinom()

该函数从给定样本产生给定概率的所需数量的随机值。

# Find 8 random values from a sample of 150 with probability of 0.4.
x <- rbinom(8,150,.4)

print(x)

当我们执行上面的代码,它产生以下结果 -

[1] 58 61 59 66 55 60 61 67

分类导航

关注微信下载离线手册

bootwiki移动版 bootwiki
(群号:472910771)