×
Spark 快速入门Spark 编程指南引入 Spark初始化 SparkSpark 共享变量

Spark 快速上手

Spark 独立应用程序Spark ShellSpark 运行程序Spark RDDsSpark 并行集合Spark 外部数据集Spark RDD 操作Spark RDD持久化Spark StreamingSpark Streaming示例

Spark 基本概念

Spark Streaming关联初始化StreamingContextSpark Streaming离散流Spark 输入DStreamsSpark DStream中的转换Spark DStream的输出操作Spark DStreams缓存或持久化Spark Streaming CheckpointingSpark Streaming部署应用程序Spark Streaming监控应用程序Spark Streaming性能调优Spark Streaming优化执行时间Spark Streaming批容量Spark Streaming内存调优Spark Streaming容错语义Spark SQLSpark SQL开始Spark SQL性能调优Spark SQL其他接口编写语言集成相关查询Spark SQL数据类型Spark SQL数据源Spark SQL RDDsSpark SQL parquet文件Spark SQL JSON数据集Spark SQL Hive表Spark GraphX编程指南Spark GraphX开始Spark GraphX图算法Spark GraphX例子Spark GraphX提交应用程序Spark 独立运行Spark 在yarn上运行Spark GraphX属性图Spark 配置Spark GraphX图操作符Spark GraphX Pregel APISpark GraphX图构造者Spark GraphX顶点和边RDDs

Spark SQL parquet文件


Parquet是一种柱状(columnar)格式,可以被许多其它的数据处理系统支持。Spark SQL提供支持读和写Parquet文件的功能,这些文件可以自动地保留原始数据的模式。

加载数据

// sqlContext from the previous example is used in this example.
// createSchemaRDD is used to implicitly convert an RDD to a SchemaRDD.
import sqlContext.createSchemaRDD

val people: RDD[Person] = ... // An RDD of case class objects, from the previous example.

// The RDD is implicitly converted to a SchemaRDD by createSchemaRDD, allowing it to be stored using Parquet.
people.saveAsParquetFile("people.parquet")

// Read in the parquet file created above.  Parquet files are self-describing so the schema is preserved.
// The result of loading a Parquet file is also a SchemaRDD.
val parquetFile = sqlContext.parquetFile("people.parquet")

//Parquet files can also be registered as tables and then used in SQL statements.
parquetFile.registerTempTable("parquetFile")
val teenagers = sqlContext.sql("SELECT name FROM parquetFile WHERE age >= 13 AND age <= 19")
teenagers.map(t => "Name: " + t(0)).collect().foreach(println)

配置

可以在SQLContext上使用setConf方法配置Parquet或者在用SQL时运行SET key=value命令来配置Parquet。

Property Name Default Meaning
spark.sql.parquet.binaryAsString false 一些其它的Parquet-producing系统,特别是Impala和其它版本的Spark SQL,当写出Parquet模式的时候,二进制数据和字符串之间无法区分。这个标记告诉Spark SQL将二进制数据解释为字符串来提供这些系统的兼容性。
spark.sql.parquet.cacheMetadata true 打开parquet元数据的缓存,可以提高静态数据的查询速度
spark.sql.parquet.compression.codec gzip 设置写parquet文件时的压缩算法,可以接受的值包括:uncompressed, snappy, gzip, lzo
spark.sql.parquet.filterPushdown false 打开Parquet过滤器的pushdown优化。因为已知的Paruet错误,这个特征默认是关闭的。如果你的表不包含任何空的字符串或者二进制列,打开这个特征仍是安全的
spark.sql.hive.convertMetastoreParquet true 当设置为false时,Spark SQL将使用Hive SerDe代替内置的支持

分类导航

关注微信下载离线手册

bootwiki移动版 bootwiki
(群号:472910771)