×
Spark 快速入门Spark 编程指南引入 Spark初始化 SparkSpark 共享变量

Spark 快速上手

Spark 独立应用程序Spark ShellSpark 运行程序Spark RDDsSpark 并行集合Spark 外部数据集Spark RDD 操作Spark RDD持久化Spark StreamingSpark Streaming示例

Spark 基本概念

Spark Streaming关联初始化StreamingContextSpark Streaming离散流Spark 输入DStreamsSpark DStream中的转换Spark DStream的输出操作Spark DStreams缓存或持久化Spark Streaming CheckpointingSpark Streaming部署应用程序Spark Streaming监控应用程序Spark Streaming性能调优Spark Streaming优化执行时间Spark Streaming批容量Spark Streaming内存调优Spark Streaming容错语义Spark SQLSpark SQL开始Spark SQL性能调优Spark SQL其他接口编写语言集成相关查询Spark SQL数据类型Spark SQL数据源Spark SQL RDDsSpark SQL parquet文件Spark SQL JSON数据集Spark SQL Hive表Spark GraphX编程指南Spark GraphX开始Spark GraphX图算法Spark GraphX例子Spark GraphX提交应用程序Spark 独立运行Spark 在yarn上运行Spark GraphX属性图Spark 配置Spark GraphX图操作符Spark GraphX Pregel APISpark GraphX图构造者Spark GraphX顶点和边RDDs

Spark 独立应用程序


独立应用程序

现在假设我们想要使用 Spark API 写一个独立的应用程序。我们将通过使用 Scala(用 SBT),Java(用 Maven) 和 Python 写一个简单的应用程序来学习。

我们用 Scala 创建一个非常简单的 Spark 应用程序。如此简单,事实上它的名字叫 SimpleApp.scala

/* SimpleApp.scala */
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf

object SimpleApp {
  def main(args: Array[String]) {
    val logFile = "YOUR_SPARK_HOME/README.md" // 应该是你系统上的某些文件
    val conf = new SparkConf().setAppName("Simple Application")
    val sc = new SparkContext(conf)
    val logData = sc.textFile(logFile, 2).cache()
    val numAs = logData.filter(line => line.contains("a")).count()
    val numBs = logData.filter(line => line.contains("b")).count()
    println("Lines with a: %s, Lines with b: %s".format(numAs, numBs))
  }
}

这个程序仅仅是在 Spark README 中计算行里面包含 'a' 和包含 'b' 的次数。你需要注意将 YOUR_SPARK_HOME 替换成你已经安装 Spark 的路径。不像之前的 Spark Shell 例子,这里初始化了自己的 SparkContext,我们把 SparkContext 初始化作为程序的一部分。

我们通过 SparkContext 的构造函数参入 SparkConf 对象,这个对象包含了一些关于我们程序的信息。

我们的程序依赖于 Spark API,所以我们需要包含一个 sbt 文件文件,simple.sbt 解释了 Spark 是一个依赖。这个文件还要补充 Spark 依赖于一个 repository:

name := "Simple Project"

version := "1.0"

scalaVersion := "2.10.4"

libraryDependencies += "org.apache.spark" %% "spark-core" % "1.2.0"

要让 sbt 正确工作,我们需要把 SimpleApp.scalasimple.sbt 按照标准的文件目录结构布局。上面的做好之后,我们可以把程序的代码创建成一个 JAR 包。然后使用 spark-submit 来运行我们的程序。

# Your directory layout should look like this
$ find .
.
./simple.sbt
./src
./src/main
./src/main/scala
./src/main/scala/SimpleApp.scala

# Package a jar containing your application
$ sbt package
...
[info] Packaging {..}/{..}/target/scala-2.10/simple-project_2.10-1.0.jar

# Use spark-submit to run your application
$ YOUR_SPARK_HOME/bin/spark-submit 
  --class "SimpleApp" 
  --master local[4] 
  target/scala-2.10/simple-project_2.10-1.0.jar
...
Lines with a: 46, Lines with b: 23

分类导航

关注微信下载离线手册

bootwiki移动版 bootwiki
(群号:472910771)