×

Hadoop 教程

Hadoop 关于Hadoop 简介Hadoop HDFSHadoop 环境设置Hadoop 写文件Hadoop 读文件Hadoop 可靠性Hadoop 命令工具Hadoop YARNHadoop ResourceManagerHadoop NodeManagerHadoop ApplicationMasterHadoop ContainerHadoop FailoverHadoop MapReduceHadoop 读取数据Hadoop MapperHadoop ShuffleHadoop 编程Hadoop IOHadoop 测试Hadoop 安装Hadoop 配置Hadoop 监控Hadoop 参考

Hadoop 相关教程

Hadoop 大数据概述Hadoop 大数据解决方案Hadoop HDFS概述Hadoop HDFS操作Hadoop 命令参考Hadoop 流Hadoop 多节点集群

Hadoop YARN


Hadoop Hadoop - YARN

旧的MapReduce架构

yarn-old-mapreduce

  • JobTracker: 负责资源管理,跟踪资源消耗和可用性,作业生命周期管理(调度作业任务,跟踪进度,为任务提供容错)
  • TaskTracker: 加载或关闭任务,定时报告认为状态

此架构会有以下问题:

  1. JobTracker是MapReduce的集中处理点,存在单点故障
  2. JobTracker完成了太多的任务,造成了过多的资源消耗,当MapReduce job 非常多的时候,会造成很大的内存开销。这也是业界普遍总结出老Hadoop的MapReduce只能支持4000 节点主机的上限
  3. 在TaskTracker端,以map/reduce task的数目作为资&##x6E90;的表示过于简单,没有考虑到cpu/ 内存的占用情况,如果两个大内存消耗的task被调度到了一块,很容易出现OOM
  4. 在TaskTracker端,把资源强制划分为map task slot和reduce task slot, 如果当系统中只有map task或者只有reduce task的时候,会造成资源的浪费,也就集群资源利用的问题

总的来说就是单点问题资源利用率问题

YARN架构

yarn-architecture

yarn-architecture-physical

YARN就是将JobTracker的职责进行拆分,将资源管理和任务调度监控拆分成独立#x7ACB;的进程:一个全局的资源管理和一个每个作业的管理(ApplicationMaster) ResourceManager和NodeManager提供了计算资源的分配和管理,而ApplicationMaster则完成应用程序的运行

  • ResourceManager: 全局资源管理和任务调度
  • NodeManager: 单个节点的资源管理和监控
  • ApplicationMaster: 单个作业的资源管理和任务监控
  • Container: 资源申请的单位和任务运行的容器

架构对比

hadoop-different

YARN架构下形成了一个通用的资源管理平台和一个通用的应用计算^#x5E73;台,避免了旧架构的单点问题和资源利用率问题,同时也让在其上运行的应用不再局限于MapReduce形式

YARN基本流程

yarn-process

yarn-process-status-update

1. Job submission

从ResourceManager中获取一个Application ID 检查作业输出配置,计算输入分片 拷贝作业资源(job jar、配置文件、分片信息)到HDFS,以便后面任务的执行

2. Job initialization

ResourceManager将作业递交给Scheduler(有很多调度算法,一般是根据优先级)Scheduler为作业分配一个Container,ResourceManager就加载一个application master process并交给NodeManager管理ApplicationMaster主要是创建一系列的监控进程来跟踪作业的进度,同时获取输入分片,为每一个分片创建一个Map task和相应的reduce task Application Master还决定如何运行作业,如果作业很小(可配置),则直接在同一个JVM下运行

3. Task assignment

ApplicationMaster向Resource Manager申请资源(一个个的Container,指定任务分配的资源要求)一般是根据data locality来分配资源

4. Task execution

ApplicationMaster根据ResourceManager的分配情况,在对应的NodeManager中启动Container 从HDFSN#x4E2D;读取任务所需资源(job jar,配置文件等),然后执行该任务

5. Progress and status update

定时将任务的进度和状态报告给ApplicationMaster Client定时向ApplicationMaster获取整个任务的进度和状态

6. Job completion

Client定时检查整个作业是否完成 作业完成后,会清空临时文件、目录等


分类导航

关注微信下载离线手册

bootwiki移动版 bootwiki
(群号:472910771)