×
MATLAB 介绍MATLAB 安装MATLAB 基本语法MATLAB 变量MATLAB 命令MATLAB M-FilesMATLAB 数据类型MATLAB 运算符MATLAB 算术运算MATLAB 逻辑运算MATLAB 关系运算MATLAB 位运算MATLAB 集合操作MATLAB 决策制定MATLAB if...end 语句MATLAB if...else...end 语句MATLAB if...elseif...else...endMATLAB 嵌套if语句MATLAB switch语句MATLAB 嵌套switch语句MATLAB 循环类型MATLAB while循环MATLAB for循环MATLAB 嵌套循环MATLAB break语句MATLAB continue语句MATLAB 向量MATLAB 向量的加法和减法MATLAB 标量向量乘法MATLAB 转置向量MATLAB 追加向量MATLAB 向量的模MATLAB 向量点积MATLAB 等差元素向量MATLAB 矩阵MATLAB 矩阵的加法和减法MATLAB 除法(左,右)矩阵MATLAB 矩阵标量操作MATLAB 矩阵的转置MATLAB 串联矩阵MATLAB 矩阵乘法MATLAB 矩阵的行列式MATLAB 逆矩阵MATLAB 数组MATLAB 冒号符号MATLAB 数字MATLAB 字符串MATLAB 函数MATLAB 数据导入MATLAB 数据导出MATLAB 绘图MATLAB 图形MATLAB 代数MATLAB 微积分MATLAB 多项式MATLAB 变换MATLAB GNU Octave教程MATLAB Simulink 仿真

MATLAB微积分


MATLAB 中有些问题需要使用微积分来解决,MATLAB提供微分方程求解任何限制的程度和计算方法,并且可以很容易地绘制图形复变函数,并检查最大值,最小值和图形解决原始函数,以及其衍生的其他内容。

在本章中,我们将讨论预演算概念,即计算功能的限制和验证的属性限制。

MATLAB计算限制

在 MATLAB 中如果要限制计算就要使用 limit 命令。其最基本的形式是将表达 limit 命令作为参数,并作为独立变量变为零发现极限的表达。

例如,让我们计算一个函数的极限 f(x) = (x3 + 5)/(x4 + 7), 当 x 趋于零。

syms x
limit((x^3 + 5)/(x^4 + 7))

MATLAB执行上述语句,返回以下结果:

ans =
 5/7 

limit 命令属于符号计算的境界中,你需要使用 SYMS 命令告诉 MATLAB 您使用的符号变量。

limit 命令也可以计算一个函数的限制,作为变量趋于零以外的一些数字。为了计算 lim x->a(f(x)),我们使用 limit 命令参数,其中,第一个是表达式,第二个是数量,x 趋向,在这里它是a。

例如,让我们计算函数极限 f(x) = (x-3)/(x-1),  x 无限接近于 1.

limit((x - 3)/(x-1),1)

MATLAB执行上述语句,并返回以下结果:

ans =
 NaN

继续执行另外的实例,

limit(x^2 + 5, 3)

MATLAB执行上述语句,返回以下结果:

ans =
 14 

使用Octave计算限制

以下是上面的例子中使用 symbolic 包 Octave 版本,尝试执行和比较的结果:

pkg load symbolic
symbols
x=sym("x");

subs((x^3+5)/(x^4+7),x,0)

Octave 执行上面的语句,并返回以下结果:

ans =
0.7142857142857142857

核查的基本性质限制

代数极限定理提供了一些基本的性能限制。

如下所示:

limx->p ( f(x) + g(x)) = limx->p f(x) + limx->p g(x)limx->p (f(x)- g(x)) = limx->p f(x) - limx->p g(x)limx->p (f(x)· g(x)) =  limx->p f(x)· limx->p g(x)limx->p (f(x)/g(x)) = limx->p f(x)/ limx->p g(x)

我们考虑两个函数:

  1. f(x) = (3x + 5)/(x - 3)

  2. g(x) = x2 + 1.

让我们计算为 x 的函数的限制的倾向 5,这两个函数和验证限制使用这两个函数和MATLAB的基本属性。

详细例子

在MATLAB中建立一个脚本文件,并输入下述代码:

syms x
f = (3*x + 5)/(x-3);
g = x^2 + 1;
l1 = limit(f, 4)
l2 = limit (g, 4)
lAdd = limit(f + g, 4)
lSub = limit(f - g, 4)
lMult = limit(f*g, 4)
lDiv = limit (f/g, 4)

运行该文件时,显示如下结果:

l1 =
 17
  
l2 =
17
  
lAdd =
 34
 
lSub =
 0
  
lMult =
289
  
lDiv =
1

限制使用的基本性质的验证Octave

以下是上面的例子中使用 symbolic 包 Octave 版本,尝试执行和比较的结果: 

pkg load symbolic
symbols

x = sym("x");
f = (3*x + 5)/(x-3);
g = x^2 + 1;

l1=subs(f, x, 4)
l2 = subs (g, x, 4)
lAdd = subs (f+g, x, 4)
lSub = subs (f-g, x, 4)
lMult = subs (f*g, x, 4)
lDiv = subs (f/g, x, 4)

Octave 执行上述语句,返回以下结果:

l1 =

17.0
l2 =

17.0
lAdd =

34.0
lSub =

0.0
lMult =

289.0
lDiv =

1.0

MATLAB 左,右侧限制

当一个函数具有某些特定变量的值的不连续性,限制在这一点上不存在。换句话说,限制具有不连续的函数f(x)在x = a ,当不相等的值的限制,当 x 趋向 x 从左侧的值限制为 x 的方法。

这导致的概念左手侧 和右手侧 限制。a限值定为左手侧 x > a 限制,从左侧,即 X 接近的值的 xa 。当是不相等的左手系的限制和右手限制,该限制不存在。

让我们考虑一个函数:

f(x) = (x - 3)/|x - 3|

我们将证明 limx->3 f(x) 不存在。 MATLAB帮助我们建立这个事实在两个方面:

  • 通过绘制的函数的曲线图,并示出了不连续

  • 通过计算的限制和显示,两者是不同的。

左手侧和右手侧限制,计算传递字符串 '左' 和 '右' limit 命令的最后一个参数。

具体示例

在MATLAB中建立一个脚本文件,并输入下述代码:

f = (x - 3)/abs(x-3);
ezplot(f,[-1,5])
l = limit(f,x,3,'left')
r = limit(f,x,3,'right')

运行该文件,MATLAB 得出如下的图型:

并显示下面的输出:

l =
 -1
  
r =
1



分类导航

关注微信下载离线手册

bootwiki移动版 bootwiki
(群号:472910771)