×
关于关于关于1. 如何学习单片机7. LED 点阵的学习13.1602 液晶与串口的应用1.1 学习什么单片机7.1 C 语言变量的作用域13.1 通信时序解析1.2 如何学习单片机7.2 C 语言变量的存储类别13.2 1602 整屏移动1.3 单片机学习的准备工作7.3 LED 点阵的介绍13.3 多个 .c 文件的初步认识1.4 单片机开发环境搭建--Keil uVision4安装教程7.4 LED 点阵的图形显示13.4 单片机计算器实例1.5 Keil uVision4 简单使用教程7.5 LED 点阵的纵向移动13.5 串口通信原理和控制程序第一章问题汇总7.6 LED 点阵的横向移动14. I2C 总线与 EEPROM2. 点亮你的 LED 灯8. 单片机按键14.1 单片机 I2C 时序介绍2.1 单片机内部资源8.1 单片机最小系统解析14.2 I2C 寻址模式2.2 单片机最小系统8.2 C 语言函数的调用14.3 单片机 EEPROM 简介2.3 发光二极管(LED 灯)8.3 C 语言函数的形参和实参14.4 EEPROM 单字节读写操作时序2.4 特殊功能寄存器和位定义8.4 单片机按键介绍14.5 EEPROM 多字节读写操作时序2.5 新建一个工程8.5 ​单片机独立按键扫描程序14.6 EEPROM 的页写入2.6 第一个单片机程序8.6 单片机按键消抖程序14.7 I2C 和 EEPROM 的综合编程2.7 将程序下载到单片机8.7 单片机矩阵按键的扫描15. 实时时钟 DS13023. 单片机硬件基础知识学习8.8 简易加法计算器程序15.1 BCD 码介绍3.1 电磁干扰 EMI9. 步进电机与蜂鸣器15.2 单片机 SPI 通信接口3.2 单片机中去耦电容的应用9.1 单片机 IO 口的结构15.3 实时时钟芯片 DS1302 介绍3.3 三极管的的概念及其工作原理9.2 单片机上下拉电阻15.4 DS1302 的硬件信息3.4 单片机中三极管的应用9.3 电机的分类15.5 DS1302 寄存器介绍3.5 74HC138 三八译码器的应用9.4 28BYJ-48 步进电机原理15.6 DS1302 通信时序介绍3.6 LED 灯闪烁程序9.5 让电机转起来15.7 DS1302 的 BURST 模式4. 流水灯的实现9.6 转动精度与深入分析15.8 C 语言复合数据类型4.1 二进制、十进制和十六进制9.7 电机控制程序基础15.9 单片机电子时钟程序设计4.2 C 语言变量类型和范围9.8 实用的电机控制程序16. 红外通信与温度传感器4.3 C 语言基本运算符9.9 单片机蜂鸣器16.1 红外光的基本原理4.4 C 语言 for 循环语句10. 实例练习与经验积累16.2 红外遥控通信原理4.5 C 语言 while 循环语句10.1 单片机数字秒表程序16.3 NEC 协议红外遥控器4.6 C 语言函数的简单介绍10.2 PWM 的原理与控制程序16.4 温度传感器 DS18B204.7 单片机延时方法10.3 单片机交通灯实例17. 模数转换与数模转换4.8 LED 流水灯程序10.4 51单片机 RAM 区域的划分17.1 A/D 和 D/A 的基本概念5. 定时器与数码管基础10.5 单片机长短按键的应用17.2 A/D(模数转换)的主要指标5.1 逻辑电路与逻辑运算11. UART 串口通信17.3 PCF8591 硬件接口5.2 定时器介绍11.1 单片机串行通信介绍17.4 PCF8591 应用程序5.3 定时器的寄存器11.2 RS232 通信接口17.5 A/D 差分输入信号5.4 定时器的应用11.3 USB 转串口通信17.6 D/A 输出5.5 LED 数码管的介绍11.4 IO 口模拟 UART 串口通信17.7 单片机信号发生器程序5.6 数码管的真值表11.5 UART 串口通信的基本应用18. RS485 通信与 Modbus 协议5.7 数码管的静态显示11.6 通信实例与 ASCII 码18.1 RS485 通信6. 中断与数码管动态显示12. 1602 液晶介绍18.2 Modbus 通信协议介绍6.1 C 语言数组12.1 C 语言变量的地址18.3 Modbus 多机通信程序6.2 C 语言 if 语句12.2 C 语言指针变量的声明6.3 C 语言 switch 语句12.3 C 语言指针的简单示例6.4 数码管的动态显示12.4 C 语言指向数组元素的指针6.5 单片机数码管显示消隐12.5 ​C 语言字符数组和字符指针6.6 单片机中断系统12.6 1602 液晶介绍6.7 单片机中断的优先级12.7 1602 液晶的读写时序介绍12.8 1602 液晶指令介绍12.9 1602 液晶简单显示程序

6.4 单片机数码管动态显示程序[带解释]


我们在上一章学习数码管静态显示的时候说到,74HC138 只能在同一时刻导通一个三极管,而我们的数码管是靠了6个三极管来控制,那我们如何来让数码管同时显示呢?这就用到了动态显示的概念。

多个数码管显示数字的时候,我们实际上是轮流点亮数码管(一个时刻内只有一个数码管是亮的),利用人眼的视觉暂留现象(也叫余辉效应),就可以做到看起来是所有数码管都同时亮了,这就是动态显示,也叫做动态扫描。

例如:有2个数码管,我们要显示“12”这个数字,先让高位的位选三极管导通,然后控制段选让其显示“1”,延时一定时间后再让低位的位选三极管导通,然后控制段选让其显示“2”。把这个流程以一定的速度循环运行就可以让数码管显示出“12”,由于交替速度非常快,人眼识别到的就是“12”这两位数字同时亮了。

那么一个数码管需要点亮多长时间呢?也就是说要多长时间完成一次全部数码管的扫描呢(很明显:整体扫描时间=单个数码管点亮时间*数码管个数)?答案是:10 ms 以内。当电视机和显示器还处在 CRT(电子显像管)时代的时候,有一句很流行的广告语——“100 Hz无闪烁”,没错,只要刷新率大于 100 Hz,即刷新时间小于 10 ms,就可以做到无闪烁,这也就是我们的动态扫描的硬性指标。那么你也许会问,有最小值的限制吗?理论上没有,但实际上做到更快的刷新却没有任何进步的意义了,因为已经无闪烁了,再快也还是无闪烁,只是徒然增加 CPU 的负荷而已(因为1秒内要执行更多次的扫描程序)。所以,通常我们设计程序的时候,都是取一个接近 10 ms,又比较规整的值就行了。我们开发板上有6个数码管,那么我们现在就来着手写一个数码管动态扫描的程序,实现兼验证上面讲的动态显示原理。

我们的目标还是实现秒表功能,只不过这次有6个位了,最大可以计到999999秒。那么现在要实现的这个程序相对于前几章的例程来说就要复杂的多了,既要处理秒表计数,又要处理动态扫描。在编写这类稍复杂的程序时,建议初学者们先用程序流程图来把程序的整个流程理清,在动手写程序之前先把整个程序的结构框架搭好,把每一个环节要实现的功能先细化出来,然后再用程序代码一步一步的去实现出来。这样就可以避免无处下笔的迷茫感了。如图6-1就是本例的程序流程图,大家先根据流程图把程序的执行经过在大脑里走一遍,然后再看接下来的程序代码,体会一下流程图的作用,看是不是能帮助你更顺畅的理清程序流程。

图6-1 数码管动态显示秒表程序流程图

#include <reg52.h>

sbit ADDR0 = P1^0;
sbit ADDR1 = P1^1;
sbit ADDR2 = P1^2;
sbit ADDR3 = P1^3;
sbit ENLED = P1^4;

unsigned char code LedChar[] = {  //数码管显示字符转换表
    0xC0, 0xF9, 0xA4, 0xB0, 0x99, 0x92, 0x82, 0xF8,
    0x80, 0x90, 0x88, 0x83, 0xC6, 0xA1, 0x86, 0x8E
};
unsigned char LedBuff[6] = { //数码管显示缓冲区,初值 0xFF 确保启动时都不亮
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
};

void main(){
    unsigned char i = 0;  //动态扫描的索引

    unsigned int cnt = 0; //记录 T0 中断次数
    unsigned long sec = 0; //记录经过的秒数

    ENLED = 0;  //使能 U3,选择控制数码管
    ADDR3 = 1; //因为需要动态改变 ADDR0-2 的值,所以不需要再初始化了

    TMOD = 0x01;  //设置 T0 为模式1
    TH0 = 0xFC;  //为 T0 赋初值 0xFC67,定时 1 ms
    TL0 = 0x67;
    TR0 = 1;  //启动 T0

    while (1){
        if (TF0 == 1){  //判断 T0 是否溢出
            TF0 = 0;  //T0 溢出后,清零中断标志
            TH0 = 0xFC;  //并重新赋初值
            TL0 = 0x67;
            cnt++;  //计数值自加1

            if (cnt >= 1000){ //判断 T0 溢出是否达到1000次
                cnt = 0;  //达到1000次后计数值清零
                sec++;  //秒计数自加1

                //以下代码将 sec 按十进制位从低到高依次提取并转为数码管显示字符
                LedBuff[0] = LedChar[sec%10];
                LedBuff[1] = LedChar[sec/10%10];
                LedBuff[2] = LedChar[sec/100%10];
                LedBuff[3] = LedChar[sec/1000%10];
                LedBuff[4] = LedChar[sec/10000%10];
                LedBuff[5] = LedChar[sec/100000%10];
            }
            //以下代码完成数码管动态扫描刷新
            if (i == 0)
            { ADDR2=0; ADDR1=0; ADDR0=0; i++; P0=LedBuff[0]; }
            else if (i == 1)
            { ADDR2=0; ADDR1=0; ADDR0=1; i++; P0=LedBuff[1]; }
            else if (i == 2)
            { ADDR2=0; ADDR1=1; ADDR0=0; i++; P0=LedBuff[2]; }
            else if (i == 3)
            { ADDR2=0; ADDR1=1; ADDR0=1; i++; P0=LedBuff[3]; }
            else if (i == 4)
            { ADDR2=1; ADDR1=0; ADDR0=0; i++; P0=LedBuff[4]; }
            else if (i == 5)
            { ADDR2=1; ADDR1=0; ADDR0=1; i=0; P0=LedBuff[5]; }
        }
    }
}

这段程序,大家自己抄到 Keil 中,然后边抄边结合程序流程图来理解,最终下载到实验板上看一下运行结果。其中下边的 if...else 语句就是每 1 ms 快速的刷新一个数码管,这样6个数码管整体刷新一遍的时间就是 6 ms,视觉感官上就是6个数码管同时亮起来了。

在 C 语言中, /”等同于数学里的除法运算,而“%”等同于我们小学学的求余数运算,这个前边已有介绍。如果是123456这个数字,我们要正常显示在数码管上,个位显示,就是直接对10取余数,这个“6”就出来了,十位数字就是先除以10,然后再对10取余数,以此类推,就把6个数字全部显示出来了。

对于多选一的动态刷新数码管的方式,我们如果用 switch 会有更好的效果,大家来看一下我们用 switch 语句完成的情况。

#include <reg52.h>

sbit ADDR0 = P1^0;
sbit ADDR1 = P1^1;
sbit ADDR2 = P1^2;
sbit ADDR3 = P1^3;
sbit ENLED = P1^4;

unsigned char code LedChar[] = { //数码管显示字符转换表
    0xC0, 0xF9, 0xA4, 0xB0, 0x99, 0x92, 0x82, 0xF8,
    0x80, 0x90, 0x88, 0x83, 0xC6, 0xA1, 0x86, 0x8E
};
unsigned char LedBuff[6] = { //数码管显示缓冲区,初值 0xFF 确保启动时都不亮
    0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
};

void main(){
    unsigned char i = 0;  //动态扫描的索引
    unsigned int cnt = 0;  //记录 T0 中断次数
    unsigned long sec = 0;  //记录经过的秒数

    ENLED = 0;  //使能 U3,选择控制数码管
    ADDR3 = 1;  //因为需要动态改变 ADDR0-2 的值,所以不需要再初始化了
    TMOD = 0x01; //设置 T0 为模式1
    TH0 = 0xFC; //为 T0 赋初值 0xFC67,定时 1 ms
    TL0 = 0x67;
    TR0 = 1;  //启动 T0

    while (1){
        if (TF0 == 1){  //判断 T0 是否溢出
            TF0 = 0;  //T0 溢出后,清零中断标志
            TH0 = 0xFC;  //并重新赋初值
            TL0 = 0x67;
            cnt++;  //计数值自加1

            if (cnt >= 1000){  //判断 T0 溢出是否达到1000次
                cnt = 0;  //达到1000次后计数值清零
                sec++;  //秒计数自加1

                //以下代码将 sec 按十进制位从低到高依次提取并转为数码管显示字符
                LedBuff[0] = LedChar[sec%10];
                LedBuff[1] = LedChar[sec/10%10];
                LedBuff[2] = LedChar[sec/100%10];
                LedBuff[3] = LedChar[sec/1000%10];
                LedBuff[4] = LedChar[sec/10000%10];
                LedBuff[5] = LedChar[sec/100000%10];
            }
            //以下代码完成数码管动态扫描刷新
            switch (i){
                case 0: ADDR2=0; ADDR1=0; ADDR0=0; i++; P0=LedBuff[0]; break;
                case 1: ADDR2=0; ADDR1=0; ADDR0=1; i++; P0=LedBuff[1]; break;
                case 2: ADDR2=0; ADDR1=1; ADDR0=0; i++; P0=LedBuff[2]; break;
                case 3: ADDR2=0; ADDR1=1; ADDR0=1; i++; P0=LedBuff[3]; break;
                case 4: ADDR2=1; ADDR1=0; ADDR0=0; i++; P0=LedBuff[4]; break;
                case 5: ADDR2=1; ADDR1=0; ADDR0=1; i=0; P0=LedBuff[5]; break;
                default: break;
            }
        }
    }
}

程序完成的功能是一模一样的,但大家看一下,switch 语句是不是比 if...else 语句显得要整齐清爽呢。


分类导航

关注微信下载离线手册

bootwiki移动版 bootwiki
(群号:472910771)