×
关于关于关于1. 如何学习单片机7. LED 点阵的学习13.1602 液晶与串口的应用1.1 学习什么单片机7.1 C 语言变量的作用域13.1 通信时序解析1.2 如何学习单片机7.2 C 语言变量的存储类别13.2 1602 整屏移动1.3 单片机学习的准备工作7.3 LED 点阵的介绍13.3 多个 .c 文件的初步认识1.4 单片机开发环境搭建--Keil uVision4安装教程7.4 LED 点阵的图形显示13.4 单片机计算器实例1.5 Keil uVision4 简单使用教程7.5 LED 点阵的纵向移动13.5 串口通信原理和控制程序第一章问题汇总7.6 LED 点阵的横向移动14. I2C 总线与 EEPROM2. 点亮你的 LED 灯8. 单片机按键14.1 单片机 I2C 时序介绍2.1 单片机内部资源8.1 单片机最小系统解析14.2 I2C 寻址模式2.2 单片机最小系统8.2 C 语言函数的调用14.3 单片机 EEPROM 简介2.3 发光二极管(LED 灯)8.3 C 语言函数的形参和实参14.4 EEPROM 单字节读写操作时序2.4 特殊功能寄存器和位定义8.4 单片机按键介绍14.5 EEPROM 多字节读写操作时序2.5 新建一个工程8.5 ​单片机独立按键扫描程序14.6 EEPROM 的页写入2.6 第一个单片机程序8.6 单片机按键消抖程序14.7 I2C 和 EEPROM 的综合编程2.7 将程序下载到单片机8.7 单片机矩阵按键的扫描15. 实时时钟 DS13023. 单片机硬件基础知识学习8.8 简易加法计算器程序15.1 BCD 码介绍3.1 电磁干扰 EMI9. 步进电机与蜂鸣器15.2 单片机 SPI 通信接口3.2 单片机中去耦电容的应用9.1 单片机 IO 口的结构15.3 实时时钟芯片 DS1302 介绍3.3 三极管的的概念及其工作原理9.2 单片机上下拉电阻15.4 DS1302 的硬件信息3.4 单片机中三极管的应用9.3 电机的分类15.5 DS1302 寄存器介绍3.5 74HC138 三八译码器的应用9.4 28BYJ-48 步进电机原理15.6 DS1302 通信时序介绍3.6 LED 灯闪烁程序9.5 让电机转起来15.7 DS1302 的 BURST 模式4. 流水灯的实现9.6 转动精度与深入分析15.8 C 语言复合数据类型4.1 二进制、十进制和十六进制9.7 电机控制程序基础15.9 单片机电子时钟程序设计4.2 C 语言变量类型和范围9.8 实用的电机控制程序16. 红外通信与温度传感器4.3 C 语言基本运算符9.9 单片机蜂鸣器16.1 红外光的基本原理4.4 C 语言 for 循环语句10. 实例练习与经验积累16.2 红外遥控通信原理4.5 C 语言 while 循环语句10.1 单片机数字秒表程序16.3 NEC 协议红外遥控器4.6 C 语言函数的简单介绍10.2 PWM 的原理与控制程序16.4 温度传感器 DS18B204.7 单片机延时方法10.3 单片机交通灯实例17. 模数转换与数模转换4.8 LED 流水灯程序10.4 51单片机 RAM 区域的划分17.1 A/D 和 D/A 的基本概念5. 定时器与数码管基础10.5 单片机长短按键的应用17.2 A/D(模数转换)的主要指标5.1 逻辑电路与逻辑运算11. UART 串口通信17.3 PCF8591 硬件接口5.2 定时器介绍11.1 单片机串行通信介绍17.4 PCF8591 应用程序5.3 定时器的寄存器11.2 RS232 通信接口17.5 A/D 差分输入信号5.4 定时器的应用11.3 USB 转串口通信17.6 D/A 输出5.5 LED 数码管的介绍11.4 IO 口模拟 UART 串口通信17.7 单片机信号发生器程序5.6 数码管的真值表11.5 UART 串口通信的基本应用18. RS485 通信与 Modbus 协议5.7 数码管的静态显示11.6 通信实例与 ASCII 码18.1 RS485 通信6. 中断与数码管动态显示12. 1602 液晶介绍18.2 Modbus 通信协议介绍6.1 C 语言数组12.1 C 语言变量的地址18.3 Modbus 多机通信程序6.2 C 语言 if 语句12.2 C 语言指针变量的声明6.3 C 语言 switch 语句12.3 C 语言指针的简单示例6.4 数码管的动态显示12.4 C 语言指向数组元素的指针6.5 单片机数码管显示消隐12.5 ​C 语言字符数组和字符指针6.6 单片机中断系统12.6 1602 液晶介绍6.7 单片机中断的优先级12.7 1602 液晶的读写时序介绍12.8 1602 液晶指令介绍12.9 1602 液晶简单显示程序

11.4 单片机 IO 口模拟 UART 串口通信


为了让大家充分理解 UART 串口通信的原理,我们先把 P3.0 和 P3.1 当做 IO 口来进行模拟实际串口通信的过程,原理搞懂后,我们再使用寄存器配置实现串口通信过程。

对于 UART 串口波特率,常用的值是300、600、1200、2400、4800、9600、14400、19200、28800、38400、57600、115200等速率。IO 口模拟 UART 串行通信程序是一个简单的演示程序,我们使用串口调试助手下发一个数据,数据加1后,再自动返回。

串口调试助手,这里我们直接使用 STC-ISP 软件自带的串口调试助手,先把串口调试助手的使用给大家说一下,如图11-6所示。第一步要选择串口助手菜单,第二步选择十六进制显示,第三步选择十六进制发送,第四步选择 COM 口,这个 COM 口要和自己电脑设备管理器里的那个 COM 口一致,波特率按我们程序设定好的选择,我们程序中让一个数据位持续时间是1/9600秒,那这个地方选择波特率就是选9600,校验位选 N,数据位8,停止位1。

图11-6 串口调试助手示意图

串口调试助手的实质就是利用电脑上的 UART 通信接口,发送数据给我们的单片机,也可以把我们的单片机发送的数据接收到这个调试助手界面上。

因为初次接触通信方面的技术,所以我把后面的 IO 模拟串口通信程序进行一下解释,大家可以边看我的解释边看程序,把底层原理先彻底弄懂。

变量定义部分就不用说了,直接看 main 主函数。首先是对通信的波特率的设定,在这里我们配置的波特率是9600,那么串口调试助手也得是9600。配置波特率的时候,我们用的是定时器 T0 的模式2。模式2中,不再是 TH0 代表高8位,TL0 代表低8位了,而只有 TL0 在进行计数,当 TL0 溢出后,不仅仅会让 TF0 变1,而且还会将 TH0 中的内容重新自动装到 TL0 中。这样有一个好处,就是我们可以把想要的定时器初值提前存在 TH0 中,当 TL0 溢出后,TH0 自动把初值就重新送入 TL0 了,全自动的,不需要程序中再给 TL0 重新赋值了,配置方式很简单,大家可以自己看下程序并且计算一下初值。

波特率设置好以后,打开中断,然后等待接收串口调试助手下发的数据。接收数据的时候,首先要进行低电平检测 while (PIN_RXD),若没有低电平则说明没有数据,一旦检测到低电平,就进入启动接收函数 StartRXD()。接收函数最开始启动半个波特率周期,初学可能这里不是很明白。大家回头看一下我们的图11-2里边的串口数据示意图,如果在数据位电平变化的时候去读取,因为时序上的误差以及信号稳定性的问题很容易读错数据,所以我们希望在信号最稳定的时候去读数据。除了信号变化的那个沿的位置外,其它位置都很稳定,那么我们现在就约定在信号中间位置去读取电平状态,这样能够保证我们读的一定是正确的。

一旦读到了起始信号,我们就把当前状态设定成接收状态,并且打开定时器中断,第一次是半个周期进入中断后,对起始位进行二次判断一下,确认一下起始位是低电平,而不是一个干扰信号。以后每经过1/9600秒进入一次中断,并且把这个引脚的状态读到 RxdBuf 里边。等待接收完毕之后,我们再把这个 RxdBuf 加1,再通过 TXD 引脚发送出去,同样需要先发一位起始位,然后发8个数据位,再发结束位,发送完毕后,程序运行到 while (PIN_RXD),等待第二轮信号接收的开始。

#include <reg52.h>
sbit PIN_RXD = P3^0; //接收引脚定义
sbit PIN_TXD = P3^1; //发送引脚定义
bit RxdOrTxd = 0; //指示当前状态为接收还是发送
bit RxdEnd = 0; //接收结束标志
bit TxdEnd = 0; //发送结束标志
unsigned char RxdBuf = 0; //接收缓冲器
unsigned char TxdBuf = 0; //发送缓冲器
void ConfigUART(unsigned int baud);
void StartTXD(unsigned char dat);
void StartRXD();

void main(){
    EA = 1; //开总中断
    ConfigUART(9600);
    while (1){ //配置波特率为9600
        while (PIN_RXD); //等待接收引脚出现低电平,即起始位
        StartRXD(); //启动接收
        while (!RxdEnd); //等待接收完成
        StartTXD(RxdBuf+1); //接收到的数据+1后,发送回去
        while (!TxdEnd); //等待发送完成
    }
}
/* 串口配置函数,baud-通信波特率 */
void ConfigUART(unsigned int baud){
    TMOD &= 0xF0; //清零 T0 的控制位
    TMOD |= 0x02; //配置 T0 为模式2
    TH0 = 256 - (11059200/12)/baud; //计算 T0 重载值
}
/* 启动串行接收 */
void StartRXD(){
    TL0 = 256 - ((256-TH0)>>1); //接收启动时的 T0 定时为半个波特率周期
    ET0 = 1; //使能 T0 中断
    TR0 = 1; //启动 T0
    RxdEnd = 0; //清零接收结束标志
    RxdOrTxd = 0; //设置当前状态为接收
}
/* 启动串行发送,dat-待发送字节数据 */
void StartTXD(unsigned char dat){
    TxdBuf = dat; //待发送数据保存到发送缓冲器
    TL0 = TH0; //T0 计数初值为重载值
    ET0 = 1; //使能 T0 中断
    TR0 = 1; //启动 T0
    PIN_TXD = 0; //发送起始位
    TxdEnd = 0; //清零发送结束标志
    RxdOrTxd = 1; //设置当前状态为发送
}
/* T0 中断服务函数,处理串行发送和接收 */
void InterruptTimer0() interrupt 1{
    static unsigned char cnt = 0; //位接收或发送计数
    if (RxdOrTxd){ //串行发送处理
        cnt++;
        if (cnt <= 8){ //低位在先依次发送 8bit 数据位
            PIN_TXD = TxdBuf & 0x01;
            TxdBuf >>= 1;
        }else if (cnt == 9){ //发送停止位
            PIN_TXD = 1;
        }else{ //发送结束
            cnt = 0; //复位 bit 计数器
            TR0 = 0; //关闭 T0
            TxdEnd = 1; //置发送结束标志
        }
    }else{ //串行接收处理
        if (cnt == 0){ //处理起始位
            if (!PIN_RXD){ //起始位为0时,清零接收缓冲器,准备接收数据位
                RxdBuf = 0;
                cnt++;
            }
        }else{ //起始位不为0时,中止接收
            TR0 = 0; //关闭 T0
        }else if (cnt <= 8){ //处理8位数据位
            RxdBuf >>= 1; //低位在先,所以将之前接收的位向右移
            //接收脚为1时,缓冲器最高位置1,
            //而为0时不处理即仍保持移位后的0
            if (PIN_RXD){
                RxdBuf |= 0x80;
            }
            cnt++;
        }else{ //停止位处理
            cnt = 0; //复位 bit 计数器
            TR0 = 0; //关闭 T0
            if (PIN_RXD){ //停止位为1时,方能认为数据有效
                RxdEnd = 1; //置接收结束标志
            }
        }
    }
}

分类导航

关注微信下载离线手册

bootwiki移动版 bootwiki
(群号:472910771)