×
关于关于关于1. 如何学习单片机7. LED 点阵的学习13.1602 液晶与串口的应用1.1 学习什么单片机7.1 C 语言变量的作用域13.1 通信时序解析1.2 如何学习单片机7.2 C 语言变量的存储类别13.2 1602 整屏移动1.3 单片机学习的准备工作7.3 LED 点阵的介绍13.3 多个 .c 文件的初步认识1.4 单片机开发环境搭建--Keil uVision4安装教程7.4 LED 点阵的图形显示13.4 单片机计算器实例1.5 Keil uVision4 简单使用教程7.5 LED 点阵的纵向移动13.5 串口通信原理和控制程序第一章问题汇总7.6 LED 点阵的横向移动14. I2C 总线与 EEPROM2. 点亮你的 LED 灯8. 单片机按键14.1 单片机 I2C 时序介绍2.1 单片机内部资源8.1 单片机最小系统解析14.2 I2C 寻址模式2.2 单片机最小系统8.2 C 语言函数的调用14.3 单片机 EEPROM 简介2.3 发光二极管(LED 灯)8.3 C 语言函数的形参和实参14.4 EEPROM 单字节读写操作时序2.4 特殊功能寄存器和位定义8.4 单片机按键介绍14.5 EEPROM 多字节读写操作时序2.5 新建一个工程8.5 ​单片机独立按键扫描程序14.6 EEPROM 的页写入2.6 第一个单片机程序8.6 单片机按键消抖程序14.7 I2C 和 EEPROM 的综合编程2.7 将程序下载到单片机8.7 单片机矩阵按键的扫描15. 实时时钟 DS13023. 单片机硬件基础知识学习8.8 简易加法计算器程序15.1 BCD 码介绍3.1 电磁干扰 EMI9. 步进电机与蜂鸣器15.2 单片机 SPI 通信接口3.2 单片机中去耦电容的应用9.1 单片机 IO 口的结构15.3 实时时钟芯片 DS1302 介绍3.3 三极管的的概念及其工作原理9.2 单片机上下拉电阻15.4 DS1302 的硬件信息3.4 单片机中三极管的应用9.3 电机的分类15.5 DS1302 寄存器介绍3.5 74HC138 三八译码器的应用9.4 28BYJ-48 步进电机原理15.6 DS1302 通信时序介绍3.6 LED 灯闪烁程序9.5 让电机转起来15.7 DS1302 的 BURST 模式4. 流水灯的实现9.6 转动精度与深入分析15.8 C 语言复合数据类型4.1 二进制、十进制和十六进制9.7 电机控制程序基础15.9 单片机电子时钟程序设计4.2 C 语言变量类型和范围9.8 实用的电机控制程序16. 红外通信与温度传感器4.3 C 语言基本运算符9.9 单片机蜂鸣器16.1 红外光的基本原理4.4 C 语言 for 循环语句10. 实例练习与经验积累16.2 红外遥控通信原理4.5 C 语言 while 循环语句10.1 单片机数字秒表程序16.3 NEC 协议红外遥控器4.6 C 语言函数的简单介绍10.2 PWM 的原理与控制程序16.4 温度传感器 DS18B204.7 单片机延时方法10.3 单片机交通灯实例17. 模数转换与数模转换4.8 LED 流水灯程序10.4 51单片机 RAM 区域的划分17.1 A/D 和 D/A 的基本概念5. 定时器与数码管基础10.5 单片机长短按键的应用17.2 A/D(模数转换)的主要指标5.1 逻辑电路与逻辑运算11. UART 串口通信17.3 PCF8591 硬件接口5.2 定时器介绍11.1 单片机串行通信介绍17.4 PCF8591 应用程序5.3 定时器的寄存器11.2 RS232 通信接口17.5 A/D 差分输入信号5.4 定时器的应用11.3 USB 转串口通信17.6 D/A 输出5.5 LED 数码管的介绍11.4 IO 口模拟 UART 串口通信17.7 单片机信号发生器程序5.6 数码管的真值表11.5 UART 串口通信的基本应用18. RS485 通信与 Modbus 协议5.7 数码管的静态显示11.6 通信实例与 ASCII 码18.1 RS485 通信6. 中断与数码管动态显示12. 1602 液晶介绍18.2 Modbus 通信协议介绍6.1 C 语言数组12.1 C 语言变量的地址18.3 Modbus 多机通信程序6.2 C 语言 if 语句12.2 C 语言指针变量的声明6.3 C 语言 switch 语句12.3 C 语言指针的简单示例6.4 数码管的动态显示12.4 C 语言指向数组元素的指针6.5 单片机数码管显示消隐12.5 ​C 语言字符数组和字符指针6.6 单片机中断系统12.6 1602 液晶介绍6.7 单片机中断的优先级12.7 1602 液晶的读写时序介绍12.8 1602 液晶指令介绍12.9 1602 液晶简单显示程序

12.2 C 语言指针变量的声明


在 C 语言中,变量的地址往往都是编译系统自动分配的,对我们用户来说,我们是不知道某个变量的具体地址的。所以我们定义一个指针变量 p,把普通变量 a 的地址直接送给指针变量 p 就是 p = &a;这样的写法。

对于指针变量 p 的定义和初始化,一般有两种方式,这两种方式,初学者很容易混淆,因此这个地方没别的方法,就是死记硬背,记住即可。

方法1:定义时直接进行初始化赋值。

unsigned char a;
unsigned char *p = &a;

方法2:定义后再进行赋值。

unsigned char a;
unsigned char *p;
p = &a;

大家仔细看会看出来这两种写法的区别,它们都是正确的。我们在定义的指针变量前边加了个,这个p 就代表了这个 p 是个指针变量,不是个普通的变量,它是专门用来存放变量地址的。此外,我们定义*p 的时候,用了 unsigned char 来定义,这里表示的是这个指针指向的变量类型是 unsigned char 型的。

指针变量似乎比较好理解,大家也能很容易就听明白。但是为什么很多人弄不明白指针呢?因为在 C 语言中,有一些运算和定义,他们是有区别的,很多同学就是没弄明白它们的区别,指针就始终学不好。这里我要重点强调两个区别,只要把这两个区别弄明白了,起码指针变量这部分就不是问题了。这两个重点现在大家死记硬背,直接记住即可,靠理解有可能混淆概念。

第一个重要区别:指针变量 p 和普通变量 a 的区别。

我们定义一个变量 a,同时也可以给变量 a 赋值 a = 1,也可以赋值 a = 2。

我们定义一个指针变量 p,另外还定义了一个普通变量 a= 1,普通变量 b=2,那么这个指针变量可以指向 a 的地址,也可以指向 b 的地址,可以写成 p = &a,也可以写成 p = &b,但就是不能写成 p = 1 或者 p = 2 或者 p = a,这三种表达方式都是错的。

因此这个地方,不要看到定义*p 的时候前边有个 unsigned char 型,就错误的赋值 p=1,这个只是说明 p 指向的变量是这个 unsigned char 类型的,而 p 本身,是指针变量,不可以给它赋值普通的值或者变量,后边我们会直接把指针变量称之为指针,大家要注意一下这个小细节。

前边这个区别似乎比较好理解,还有第二个重要区别,一定要记清楚。

第二个重要区别:定义指针变量 p 和取值运算 p 的区别。

“*”这个符号,在我们的 C 语言有三个用法,第一个用法很简单,乘法操作就是用这个符号,这里就不讲了。

第二个用法,是定义指针变量的时候用的,比如 unsigned char p,这个地方使用“”代表的意思是 p 是一个指针变量,而非普通的变量。

还有第三种用法,就是取值运算,和定义指针变量是完全两码事,比如:

unsigned char  a = 1; 
unsigned char  b = 2; 
unsigned char  *p;
p = &a;
b = *p;

这样两步运算完了之后,b 的值就成了1了。在这段代码中,&a 表示取 a 这个变量的地址,把这个地址送给 p 之后,再用 p 运算表示的是取指针变量 p 指向的地址的变量的值,又把这个值送给了 b,最终的结果相当于 b=a。同样是 p,放在定义的位置就是定义指针变量,放在执行代码中就是取值运算。

这两个重要区别,大家可以反复阅读三四遍,把这两个重要区别弄明白,指针的大门就顺利的踏进去一只脚了。至于详细的用法,我们后边用得多了就会慢慢熟悉起来了。


分类导航

关注微信下载离线手册

bootwiki移动版 bootwiki
(群号:472910771)