×
关于关于关于1. 如何学习单片机7. LED 点阵的学习13.1602 液晶与串口的应用1.1 学习什么单片机7.1 C 语言变量的作用域13.1 通信时序解析1.2 如何学习单片机7.2 C 语言变量的存储类别13.2 1602 整屏移动1.3 单片机学习的准备工作7.3 LED 点阵的介绍13.3 多个 .c 文件的初步认识1.4 单片机开发环境搭建--Keil uVision4安装教程7.4 LED 点阵的图形显示13.4 单片机计算器实例1.5 Keil uVision4 简单使用教程7.5 LED 点阵的纵向移动13.5 串口通信原理和控制程序第一章问题汇总7.6 LED 点阵的横向移动14. I2C 总线与 EEPROM2. 点亮你的 LED 灯8. 单片机按键14.1 单片机 I2C 时序介绍2.1 单片机内部资源8.1 单片机最小系统解析14.2 I2C 寻址模式2.2 单片机最小系统8.2 C 语言函数的调用14.3 单片机 EEPROM 简介2.3 发光二极管(LED 灯)8.3 C 语言函数的形参和实参14.4 EEPROM 单字节读写操作时序2.4 特殊功能寄存器和位定义8.4 单片机按键介绍14.5 EEPROM 多字节读写操作时序2.5 新建一个工程8.5 ​单片机独立按键扫描程序14.6 EEPROM 的页写入2.6 第一个单片机程序8.6 单片机按键消抖程序14.7 I2C 和 EEPROM 的综合编程2.7 将程序下载到单片机8.7 单片机矩阵按键的扫描15. 实时时钟 DS13023. 单片机硬件基础知识学习8.8 简易加法计算器程序15.1 BCD 码介绍3.1 电磁干扰 EMI9. 步进电机与蜂鸣器15.2 单片机 SPI 通信接口3.2 单片机中去耦电容的应用9.1 单片机 IO 口的结构15.3 实时时钟芯片 DS1302 介绍3.3 三极管的的概念及其工作原理9.2 单片机上下拉电阻15.4 DS1302 的硬件信息3.4 单片机中三极管的应用9.3 电机的分类15.5 DS1302 寄存器介绍3.5 74HC138 三八译码器的应用9.4 28BYJ-48 步进电机原理15.6 DS1302 通信时序介绍3.6 LED 灯闪烁程序9.5 让电机转起来15.7 DS1302 的 BURST 模式4. 流水灯的实现9.6 转动精度与深入分析15.8 C 语言复合数据类型4.1 二进制、十进制和十六进制9.7 电机控制程序基础15.9 单片机电子时钟程序设计4.2 C 语言变量类型和范围9.8 实用的电机控制程序16. 红外通信与温度传感器4.3 C 语言基本运算符9.9 单片机蜂鸣器16.1 红外光的基本原理4.4 C 语言 for 循环语句10. 实例练习与经验积累16.2 红外遥控通信原理4.5 C 语言 while 循环语句10.1 单片机数字秒表程序16.3 NEC 协议红外遥控器4.6 C 语言函数的简单介绍10.2 PWM 的原理与控制程序16.4 温度传感器 DS18B204.7 单片机延时方法10.3 单片机交通灯实例17. 模数转换与数模转换4.8 LED 流水灯程序10.4 51单片机 RAM 区域的划分17.1 A/D 和 D/A 的基本概念5. 定时器与数码管基础10.5 单片机长短按键的应用17.2 A/D(模数转换)的主要指标5.1 逻辑电路与逻辑运算11. UART 串口通信17.3 PCF8591 硬件接口5.2 定时器介绍11.1 单片机串行通信介绍17.4 PCF8591 应用程序5.3 定时器的寄存器11.2 RS232 通信接口17.5 A/D 差分输入信号5.4 定时器的应用11.3 USB 转串口通信17.6 D/A 输出5.5 LED 数码管的介绍11.4 IO 口模拟 UART 串口通信17.7 单片机信号发生器程序5.6 数码管的真值表11.5 UART 串口通信的基本应用18. RS485 通信与 Modbus 协议5.7 数码管的静态显示11.6 通信实例与 ASCII 码18.1 RS485 通信6. 中断与数码管动态显示12. 1602 液晶介绍18.2 Modbus 通信协议介绍6.1 C 语言数组12.1 C 语言变量的地址18.3 Modbus 多机通信程序6.2 C 语言 if 语句12.2 C 语言指针变量的声明6.3 C 语言 switch 语句12.3 C 语言指针的简单示例6.4 数码管的动态显示12.4 C 语言指向数组元素的指针6.5 单片机数码管显示消隐12.5 ​C 语言字符数组和字符指针6.6 单片机中断系统12.6 1602 液晶介绍6.7 单片机中断的优先级12.7 1602 液晶的读写时序介绍12.8 1602 液晶指令介绍12.9 1602 液晶简单显示程序

14.6 单片机EEPROM的页写入


在向 EEPROM 连续写入多个字节的数据时,如果每写一个字节都要等待几 ms 的话,整体上的写入效率就太低了。因此 EEPROM 的厂商就想了一个办法,把 EEPROM 分页管理。24C01、24C02 这两个型号是8个字节一个页,而 24C04、24C08、24C16 是16个字节一页。我们开发板上用的型号是 24C02,一共是256个字节,8个字节一页,那么就一共有32页。

分配好页之后,如果我们在同一个页内连续写入几个字节后,最后再发送停止位的时序。EEPROM 检测到这个停止位后,就会一次性把这一页的数据写到非易失区域,就不需要像上节课那样写一个字节检测一次了,并且页写入的时间也不会超过 5 ms。如果我们写入的数据跨页了,那么写完了一页之后,我们要发送一个停止位,然后等待并且检测 EEPROM 的空闲模式,一直等到把上一页数据完全写到非易失区域后,再进行下一页的写入,这样就可以在很大程度上提高数据的写入效率。 /*I2C.c 文件程序源代码***/ (此处省略,可参考之前章节的代码) /*Lcd1602.c 文件程序源代码***/ (此处省略,可参考之前章节的代码)

/****************************eeprom.c 文件程序源代码*****************************/
#include <reg52.h>

extern void I2CStart();
extern void I2CStop();
extern unsigned char I2CReadACK();
extern unsigned char I2CReadNAK();
extern bit I2CWrite(unsigned char dat);

/* E2 读取函数,buf-数据接收指针,addr-E2 中的起始地址,len-读取长度 */
void E2Read(unsigned char *buf, unsigned char addr, unsigned char len){
do { //用寻址操作查询当前是否可进行读写操作
    I2CStart();
    if (I2CWrite(0x50<<1)){ //应答则跳出循环,非应答则进行下一次查询
        break;
    }
    I2CStop();
}while(1);

    I2CWrite(addr); //写入起始地址
    I2CStart();//发送重复启动信号
    I2CWrite((0x50<<1)|0x01); //寻址器件,后续为读操作
    while (len > 1){//连续读取 len-1 个字节
        *buf++ = I2CReadACK(); //最后字节之前为读取操作+应答
        len--;
    }
    *buf = I2CReadNAK(); //最后一个字节为读取操作+非应答
    I2CStop();
}
/* E2 写入函数,buf-源数据指针,addr-E2 中的起始地址,len-写入长度 */
void E2Write(unsigned char *buf, unsigned char addr, unsigned char len){
    while (len > 0){ //等待上次写入操作完成
        do { //用寻址操作查询当前是否可进行读写操作
            I2CStart();
            if (I2CWrite(0x50<<1)){ //应答则跳出循环,非应答则进行下一次查询
                break;
            }
            I2CStop();
        } while(1);
    //按页写模式连续写入字节

        I2CWrite(addr); //写入起始地址
        while (len > 0){
            I2CWrite(*buf++); //写入一个字节数据
            len--; //待写入长度计数递减
            addr++; //E2 地址递增
            //检查地址是否到达页边界,24C02 每页 8 字节,
            //所以检测低 3 位是否为零即可
            if ((addr&0x07) == 0){
                break; //到达页边界时,跳出循环,结束本次写操作
            }
        }
        I2CStop();
    }
}

遵循模块化的原则,我们把 EEPROM 的读写函数也单独写成一个 eeprom.c 文件。其中 E2Read 函数和上一节是一样的,因为读操作与分页无关。重点是 E2Write 函数,我们在写入数据的时候,要计算下一个要写的数据的地址是否是一个页的起始地址,如果是的话,则必须跳出循环,等待 EEPROM 把当前这一页写入到非易失区域后,再进行后续页的写入。

/*****************************main.c 文件程序源代码******************************/
#include <reg52.h>

extern void InitLcd1602();
extern void LcdShowStr(unsigned char x, unsigned char y, unsigned char *str);
extern void E2Read(unsigned char *buf, unsigned char addr, unsigned char len);
extern void E2Write(unsigned char *buf, unsigned char addr, unsigned char len);
void MemToStr(unsigned char *str, unsigned char *src, unsigned char len);

void main(){
    unsigned char i;
    unsigned char buf[5];
    unsigned char str[20];

    InitLcd1602(); //初始化液晶
    E2Read(buf, 0x8E, sizeof(buf)); //从 E2 中读取一段数据
    MemToStr(str, buf, sizeof(buf)); //转换为十六进制字符串
    LcdShowStr(0, 0, str); //显示到液晶上
    for (i=0; i<sizeof(buf); i++){ //数据依次+1,+2,+3...
        buf[i] = buf[i] + 1 + i;
    }
    E2Write(buf, 0x8E, sizeof(buf)); //再写回到 E2 中
    while(1);
}
/* 将一段内存数据转换为十六进制格式的字符串,
str-字符串指针,src-源数据地址,len-数据长度 */
void MemToStr(unsigned char *str, unsigned char *src, unsigned char len){
    unsigned char tmp;
    while (len--){
        tmp = *src >> 4; //先取高 4 位
        if (tmp <= 9){ //转换为 0-9 或 A-F
            *str++ = tmp + '0';
        }else{
            *str++ = tmp - 10 + 'A';
        }
        tmp = *src & 0x0F; //再取低 4 位
        if (tmp <= 9){  //转换为 0-9 或 A-F
            *str++ = tmp + '0';
        }else{
            *str++ = tmp - 10 + 'A';
        }
        *str++ = ' '; //转换完一个字节添加一个空格
        src++;
    }
}

多字节写入和页写入程序都编写出来了,而且页写入的程序我们还特地跨页写的数据,它们的写入时间到底差别多大呢。我们用一些工具可以测量一下,比如示波器,逻辑分析仪等工具。我现在把两次写入时间用逻辑分析仪给抓了出来,并且用时间标签 T1 和 T2 标注了开始位置和结束位置,如图14-5和图14-6所示,右侧显示的|T1-T2|就是最终写入5个字节所耗费的时间。多字节一个一个写入,每次写入后都需要再次通信检测 EEPROM 是否在“忙”,因此耗费了大量的时间,同样的写入5个字节的数据,一个一个写入用了 8.4 ms 左右的时间,而使用页写入,只用了 3.5 ms 左右的时间。

图14-5 多字节写入时间

图14-6 跨页写入时间


分类导航

关注微信下载离线手册

bootwiki移动版 bootwiki
(群号:472910771)