×
关于关于关于1. 如何学习单片机7. LED 点阵的学习13.1602 液晶与串口的应用1.1 学习什么单片机7.1 C 语言变量的作用域13.1 通信时序解析1.2 如何学习单片机7.2 C 语言变量的存储类别13.2 1602 整屏移动1.3 单片机学习的准备工作7.3 LED 点阵的介绍13.3 多个 .c 文件的初步认识1.4 单片机开发环境搭建--Keil uVision4安装教程7.4 LED 点阵的图形显示13.4 单片机计算器实例1.5 Keil uVision4 简单使用教程7.5 LED 点阵的纵向移动13.5 串口通信原理和控制程序第一章问题汇总7.6 LED 点阵的横向移动14. I2C 总线与 EEPROM2. 点亮你的 LED 灯8. 单片机按键14.1 单片机 I2C 时序介绍2.1 单片机内部资源8.1 单片机最小系统解析14.2 I2C 寻址模式2.2 单片机最小系统8.2 C 语言函数的调用14.3 单片机 EEPROM 简介2.3 发光二极管(LED 灯)8.3 C 语言函数的形参和实参14.4 EEPROM 单字节读写操作时序2.4 特殊功能寄存器和位定义8.4 单片机按键介绍14.5 EEPROM 多字节读写操作时序2.5 新建一个工程8.5 ​单片机独立按键扫描程序14.6 EEPROM 的页写入2.6 第一个单片机程序8.6 单片机按键消抖程序14.7 I2C 和 EEPROM 的综合编程2.7 将程序下载到单片机8.7 单片机矩阵按键的扫描15. 实时时钟 DS13023. 单片机硬件基础知识学习8.8 简易加法计算器程序15.1 BCD 码介绍3.1 电磁干扰 EMI9. 步进电机与蜂鸣器15.2 单片机 SPI 通信接口3.2 单片机中去耦电容的应用9.1 单片机 IO 口的结构15.3 实时时钟芯片 DS1302 介绍3.3 三极管的的概念及其工作原理9.2 单片机上下拉电阻15.4 DS1302 的硬件信息3.4 单片机中三极管的应用9.3 电机的分类15.5 DS1302 寄存器介绍3.5 74HC138 三八译码器的应用9.4 28BYJ-48 步进电机原理15.6 DS1302 通信时序介绍3.6 LED 灯闪烁程序9.5 让电机转起来15.7 DS1302 的 BURST 模式4. 流水灯的实现9.6 转动精度与深入分析15.8 C 语言复合数据类型4.1 二进制、十进制和十六进制9.7 电机控制程序基础15.9 单片机电子时钟程序设计4.2 C 语言变量类型和范围9.8 实用的电机控制程序16. 红外通信与温度传感器4.3 C 语言基本运算符9.9 单片机蜂鸣器16.1 红外光的基本原理4.4 C 语言 for 循环语句10. 实例练习与经验积累16.2 红外遥控通信原理4.5 C 语言 while 循环语句10.1 单片机数字秒表程序16.3 NEC 协议红外遥控器4.6 C 语言函数的简单介绍10.2 PWM 的原理与控制程序16.4 温度传感器 DS18B204.7 单片机延时方法10.3 单片机交通灯实例17. 模数转换与数模转换4.8 LED 流水灯程序10.4 51单片机 RAM 区域的划分17.1 A/D 和 D/A 的基本概念5. 定时器与数码管基础10.5 单片机长短按键的应用17.2 A/D(模数转换)的主要指标5.1 逻辑电路与逻辑运算11. UART 串口通信17.3 PCF8591 硬件接口5.2 定时器介绍11.1 单片机串行通信介绍17.4 PCF8591 应用程序5.3 定时器的寄存器11.2 RS232 通信接口17.5 A/D 差分输入信号5.4 定时器的应用11.3 USB 转串口通信17.6 D/A 输出5.5 LED 数码管的介绍11.4 IO 口模拟 UART 串口通信17.7 单片机信号发生器程序5.6 数码管的真值表11.5 UART 串口通信的基本应用18. RS485 通信与 Modbus 协议5.7 数码管的静态显示11.6 通信实例与 ASCII 码18.1 RS485 通信6. 中断与数码管动态显示12. 1602 液晶介绍18.2 Modbus 通信协议介绍6.1 C 语言数组12.1 C 语言变量的地址18.3 Modbus 多机通信程序6.2 C 语言 if 语句12.2 C 语言指针变量的声明6.3 C 语言 switch 语句12.3 C 语言指针的简单示例6.4 数码管的动态显示12.4 C 语言指向数组元素的指针6.5 单片机数码管显示消隐12.5 ​C 语言字符数组和字符指针6.6 单片机中断系统12.6 1602 液晶介绍6.7 单片机中断的优先级12.7 1602 液晶的读写时序介绍12.8 1602 液晶指令介绍12.9 1602 液晶简单显示程序

16.2 红外遥控通信原理


在实际的通信领域,发出来的信号一般有较宽的频谱,而且都是在比较低的频率段分布大量的能量,所以称之为基带信号,这种信号是不适合直接在信道中传输的。为便于传输、提高抗干扰能力和有效的利用带宽,通常需要将信号调制到适合信道和噪声特性的频率范围内进行传输,这就叫做信号调制。在通信系统的接收端要对接收到的信号进行解调,恢复出原来的基带信号。这部分通信原理的内容,大家了解一下即可。

我们平时用到的红外遥控器里的红外通信,通常是使用 38 K 左右的载波进行调制的,下面我把原理大概给大家介绍一下,先看发送部分原理。

调制:就是用待传送信号去控制某个高频信号的幅度、相位、频率等参量变化的过程,即用一个信号去装载另一个信号。比如我们的红外遥控信号要发送的时候,先经过 38 K 调制,如图16-4所示。

图16-4 红外信号调制

原始信号就是我们要发送的一个数据“0”位或者一位数据“1”位,而所谓 38 K 载波就是频率为 38 K 的方波信号,调制后信号就是最终我们发射出去的波形。我们使用原始信号来控制 38 K 载波,当信号是数据“0”的时候,38 K 载波毫无保留的全部发送出去,当信号是数据“1”的时候,不发送任何载波信号。

那在原理上,我们如何从电路的角度去实现这个功能呢?如图16-5所示。

图16-5 红外发射原理图

38 K 载波,我们可以用 455 K 晶振,经过12分频得到 37.91 K,也可以由时基电路 NE555 来产生,或者使用单片机的 PWM 来产生。当信号输出引脚输出高电平时,Q2 截止,不管 38 K 载波信号如何控制 Q1,右侧的竖向支路都不会导通,红外管 L1 不会发送任何信息。当信号输出是低电平的时候,那么 38 K 载波就会通过 Q1 释放出来,在 L1 上产生 38 K 的载波信号。这里要说明的是,大多数家电遥控器的 38 K 的占空比是1/3,也有1/2的,但是相对少一些。

正常的通信来讲,接收端要首先对信号通过监测、放大、滤波、解调等等一系列电路处理,然后输出基带信号。但是红外通信的一体化接收头 HS0038B,已经把这些电路全部集成到一起了,我们只需要把这个电路接上去,就可以直接输出我们所要的基带信号了,如图16-6所示。

图16-6 红外接收原理图

由于红外接收头内部放大器的增益很大,很容易引起干扰,因此在接收头供电引脚上必须加上滤波电容,官方手册给的值是 4.7 uF,我们这里直接用的 10 uF,手册里还要求在供电引脚和电源之间串联100欧的电阻,进一步降低干扰。

图16-6所示的电路,用来接收图16-5电路发送出来的波形,当 HS0038B 监测到有 38 K 的红外信号时,就会在 OUT 引脚输出低电平,当没有 38 K 的时候,OUT 引脚就会输出高电平。那我们把 OUT 引脚接到单片机的 IO 口上,通过编程,就可以获取红外通信发过来的数据了。

大家想想,OUT 引脚输出的数据是不是又恢复成为基带信号数据了呢?那我们单片机在接收这个基带信号数据的时候,如何判断接收到的是什么数据,应该遵循什么协议呢?像我们前边学到的 UART、I2C、SPI 等通信协议都是基带通信的通信协议,而红外的 38 K 仅仅是对基带信号进行调制解调,让信号更适合在信道中传输。

由于我们的红外调制信号是半双工的,而且同一时刻空间只能允许一个信号源,所以红外的基带信号不适合在 I2C 或者 SPI 通信协议中进行的,我们前边提到过 UART 虽然是2条线,但是通信的时候,实际上一条线即可,所以红外可以在 UART 中进行通信。当然,这个通信也不是没有限制的,比如在 HS0038B 的数据手册中标明,要想让 HS0038B 识别到 38 K 的红外信号,那么这个 38 K 的载波必须要大于10个周期,这就限定了红外通信的基带信号的比特率必须不能高于3800,那如果把串口输出的信号直接用 38 K 调制的话,波特率也就不能高于3800。当然还有很多其它基带协议可以利用红外来调制,下面我们介绍一种遥控器常用的红外通信协议——NEC 协议。


分类导航

关注微信下载离线手册

bootwiki移动版 bootwiki
(群号:472910771)