×
关于关于关于1. 如何学习单片机7. LED 点阵的学习13.1602 液晶与串口的应用1.1 学习什么单片机7.1 C 语言变量的作用域13.1 通信时序解析1.2 如何学习单片机7.2 C 语言变量的存储类别13.2 1602 整屏移动1.3 单片机学习的准备工作7.3 LED 点阵的介绍13.3 多个 .c 文件的初步认识1.4 单片机开发环境搭建--Keil uVision4安装教程7.4 LED 点阵的图形显示13.4 单片机计算器实例1.5 Keil uVision4 简单使用教程7.5 LED 点阵的纵向移动13.5 串口通信原理和控制程序第一章问题汇总7.6 LED 点阵的横向移动14. I2C 总线与 EEPROM2. 点亮你的 LED 灯8. 单片机按键14.1 单片机 I2C 时序介绍2.1 单片机内部资源8.1 单片机最小系统解析14.2 I2C 寻址模式2.2 单片机最小系统8.2 C 语言函数的调用14.3 单片机 EEPROM 简介2.3 发光二极管(LED 灯)8.3 C 语言函数的形参和实参14.4 EEPROM 单字节读写操作时序2.4 特殊功能寄存器和位定义8.4 单片机按键介绍14.5 EEPROM 多字节读写操作时序2.5 新建一个工程8.5 ​单片机独立按键扫描程序14.6 EEPROM 的页写入2.6 第一个单片机程序8.6 单片机按键消抖程序14.7 I2C 和 EEPROM 的综合编程2.7 将程序下载到单片机8.7 单片机矩阵按键的扫描15. 实时时钟 DS13023. 单片机硬件基础知识学习8.8 简易加法计算器程序15.1 BCD 码介绍3.1 电磁干扰 EMI9. 步进电机与蜂鸣器15.2 单片机 SPI 通信接口3.2 单片机中去耦电容的应用9.1 单片机 IO 口的结构15.3 实时时钟芯片 DS1302 介绍3.3 三极管的的概念及其工作原理9.2 单片机上下拉电阻15.4 DS1302 的硬件信息3.4 单片机中三极管的应用9.3 电机的分类15.5 DS1302 寄存器介绍3.5 74HC138 三八译码器的应用9.4 28BYJ-48 步进电机原理15.6 DS1302 通信时序介绍3.6 LED 灯闪烁程序9.5 让电机转起来15.7 DS1302 的 BURST 模式4. 流水灯的实现9.6 转动精度与深入分析15.8 C 语言复合数据类型4.1 二进制、十进制和十六进制9.7 电机控制程序基础15.9 单片机电子时钟程序设计4.2 C 语言变量类型和范围9.8 实用的电机控制程序16. 红外通信与温度传感器4.3 C 语言基本运算符9.9 单片机蜂鸣器16.1 红外光的基本原理4.4 C 语言 for 循环语句10. 实例练习与经验积累16.2 红外遥控通信原理4.5 C 语言 while 循环语句10.1 单片机数字秒表程序16.3 NEC 协议红外遥控器4.6 C 语言函数的简单介绍10.2 PWM 的原理与控制程序16.4 温度传感器 DS18B204.7 单片机延时方法10.3 单片机交通灯实例17. 模数转换与数模转换4.8 LED 流水灯程序10.4 51单片机 RAM 区域的划分17.1 A/D 和 D/A 的基本概念5. 定时器与数码管基础10.5 单片机长短按键的应用17.2 A/D(模数转换)的主要指标5.1 逻辑电路与逻辑运算11. UART 串口通信17.3 PCF8591 硬件接口5.2 定时器介绍11.1 单片机串行通信介绍17.4 PCF8591 应用程序5.3 定时器的寄存器11.2 RS232 通信接口17.5 A/D 差分输入信号5.4 定时器的应用11.3 USB 转串口通信17.6 D/A 输出5.5 LED 数码管的介绍11.4 IO 口模拟 UART 串口通信17.7 单片机信号发生器程序5.6 数码管的真值表11.5 UART 串口通信的基本应用18. RS485 通信与 Modbus 协议5.7 数码管的静态显示11.6 通信实例与 ASCII 码18.1 RS485 通信6. 中断与数码管动态显示12. 1602 液晶介绍18.2 Modbus 通信协议介绍6.1 C 语言数组12.1 C 语言变量的地址18.3 Modbus 多机通信程序6.2 C 语言 if 语句12.2 C 语言指针变量的声明6.3 C 语言 switch 语句12.3 C 语言指针的简单示例6.4 数码管的动态显示12.4 C 语言指向数组元素的指针6.5 单片机数码管显示消隐12.5 ​C 语言字符数组和字符指针6.6 单片机中断系统12.6 1602 液晶介绍6.7 单片机中断的优先级12.7 1602 液晶的读写时序介绍12.8 1602 液晶指令介绍12.9 1602 液晶简单显示程序

7.1 C 语言变量的作用域


所谓的作用域就是指变量起作用的范围,也是变量的有效范围。变量按他的作用域可以分为局部变量和全局变量。

局部变量

在一个函数内部声明的变量是内部变量,它只在本函数内有效,在本函数以外是不能使用的,这样的变量就是局部变量。此外,函数的形参也是局部变量,形参我们会在后面再详细解释。

比如上节课程序中定义的 unsigned long sec 这个变量,它是定义在 main 函数内部的,所以只能由 main 函数使用,中断函数就不能使用这个变量。同理,我们如果在中断函数内部定义的变量,在 main 函数中也是不能使用的。

全局变量

在函数外声明的变量就是全局变量。一个源程序文件可以包含一个或者多个函数,全局变量的作用范围是从它开始声明的位置一直到程序结束。

比如上节课程序中定义的 unsigned char LedBuff[6]这个数组,它的作用域就是从开始定义的位置一直到程序结束,不管是 main 函数,还是中断函数 InterruptTimer0,都可以直接使用这个数组。

局部变量只有在声明它的函数范围内可以使用,而全局变量可以被作用域内的所有的函数直接使用。所以在一个函数内既可以使用本函数内声明的局部变量,也可以使用全局变量。

从编程规范上讲,一个程序文件内所有的全局变量都应定义在文件的开头部分,在文件中所有函数之前。

由于 C 语言函数只有一个返回值,但是我们却经常会希望一个函数可以提供或影响多个结果值,这时我们就可以利用全局变量来实现。但是考虑到全局变量的一些特征,应该限制全局变量的使用,过多使用全局变量也会带来一些问题。

1) 全局变量可以被作用域内所有的函数直接引用,可以增加函数间数据联系的途径,但同时加强了函数模块之间的数据联系,使这些函数的独立性降低,对其中任何一个函数的修改都可能会影响到其它函数的执行结果,函数之间过于紧密的联系不利于程序的维护的。

2) 全局变量的应用会降低函数的通用性,函数在执行的时候过多依赖于全局变量,不利于函数的重复利用。目前我们编写的程序还都比较简单,就一个 .c 文件,但以后我们要学到一个程序中有多个 .c 文件,当一个函数被另外一个 .c 文件调用的时候,必须将这个全局变量的变量值一起移植,而全局变量不只被一个函数调用,这样会引起一些不可预见的后果。

3) 过多使用全局变量会降低程序的清晰度,使程序的可读性下降。在各个函数执行的时候都可能改变全局变量值,往往难以清楚的判断出每个时刻各个全局变量的值。

4) 定义全局变量会永久占用单片机的内存单元,而局部变量只有进入定义局部变量的函数时才会占用内存单元,函数退出后会自动释放所占用的内存。所以大量的全局变量会额外增加内存消耗。

综上所述之原因,在编程规范上有一条原则,就是尽量减少全局变量的使用,能用局部变量代替的就不用全局变量。

还有一种特殊情况,大家在看别人程序的时候请注意,C 语言是允许局部变量和全局变量同名的,他们定义后在内存中占有不同的内存单元。如果在同一源文件中,全局变量和局部变量同名,在局部变量作用域范围内,只有局部变量有效,全局变量不起作用,也就是说局部变量具有更高优先级。但是从编程规范上讲,是要避免全局变量与局部变量重名的,从而避免不必要的误解和误操作。


分类导航

关注微信下载离线手册

bootwiki移动版 bootwiki
(群号:472910771)